
If you already have a Laravel 10 application, you can install Mixpost as a package inside it.

To install Mixpost, you'll need to get a license first.

First, add the packages.inovector.com repository to your composer.json .

Next, you need to create a file called auth.json and place it either next to the composer.json file in
your project or the composer home directory. Using this command, you can determine the
composer home directory on *nix machines.

This is the content you should put in auth.json :

As a package in an existing
Laravel app

Getting a license

Installation via Composer

"repositories": [

 {

 "type": "composer",

 "url": "https://packages.inovector.com"

 }

],

composer config --list --global | grep home

{

 "http-basic": {

 "packages.inovector.com": {

 "username": "<YOUR-MIXPOST.APP-ACCOUNT-EMAIL-ADDRESS-HERE>",

https://mixpost.app/pricing

To validate if Composer can read your auth.json you can run this command:

If you did everything correctly, the above command should display your credentials. If that
command doesn't display anything, verify that you created an auth.json as mentioned above.

With this configuration in place, you'll be able to install the package into your Laravel project using
this command:

After installing the Mixpost package, you may execute:

To ensure that assets get republished each time Mixpost is updated, we strongly advise you to add
the following command to the post-update-cmd of the scripts section of your composer.json .

Mixpost uses Job Batching and you should create a database migration to build a table to contain
meta-information about your job batches.

If your application does not yet have this table, it may be generated using the:

Run the migrations with:

To make media files (images & videos) accessible from the web you should create a symbolic link
from public/storage to storage/app/public

 "password": "<YOUR-LICENSE-KEY-HERE>"

 }

 }

}

composer config --list --global | grep packages.inovector.com

composer require inovector/mixpost-pro-team "^2.0"

php artisan mixpost:install

"scripts": {

 "post-update-cmd": [

 "@php artisan mixpost:publish-assets --force=true"

]

}

php artisan queue:batches-table

php artisan migrate

https://laravel.com/docs/10.x/queues#job-batching

You can publish the config file with:

Mixpost has the ability to generate images from video while uploading a video file. This would not
be possible without FFmpeg installed on your server. You need to follow FFmpeg installation
instructions on their official website.

After installation, depending on the operating system, you need to set the ffmpeg_path and
ffprobe_path in the Mixpost config file.

Default folder path: /usr/bin/ . If FFmpeg is there, there is no need to change it.

Or, you can set them in your .env file

Mixpost utilizes its unique internal exception handler rather than the default "
App\Exceptions\ExceptionHandler". To integrate external error reporting tools with your
Mixpost setup, you should use the "Mixpost::report" method. Generally, this method is called
from the register method of your app's "App\Providers\AppServiceProvider" class:

php artisan storage:link

php artisan vendor:publish --tag=mixpost-config

/*

 * FFMPEG & FFProbe binaries paths, only used if you try to generate video thumbnails

 */

'ffmpeg_path' => env('FFMPEG_PATH', '/usr/bin/ffmpeg'),

'ffprobe_path' => env('FFPROBE_PATH', '/usr/bin/ffprobe'),

FFMPEG_PATH=/usr/bin/ffmpeg

FFPROBE_PATH=/usr/bin/ffprobe

Error Reporting

use Inovector\Mixpost\Mixpost;

use Sentry\Laravel\Integration;

Mixpost::report(function($exception) {

 Integration::captureUnhandledException($exception);

});

https://ffmpeg.org/download.html

Mixpost handles various tasks in a queued way via Laravel Horizon. If your application doesn't have
Horizon installed yet, follow their installation instructions.

After Horizon is installed, don't forget to set QUEUE_CONNECTION in your .env file to redis .

config/horizon.php should have been created in your project. In this config file, you must add a
block named mixpost-heavy to both the production and local environment.

Install Horizon

 'environments' => [

 'production' => [

 'supervisor-1' => [

 'maxProcesses' => 10,

 'balanceMaxShift' => 1,

 'balanceCooldown' => 3,

],

 'mixpost-heavy' => [

 'connection' => 'mixpost-redis',

 'queue' => ['publish-post'],

 'balance' => 'auto',

 'processes' => 8,

 'tries' => 1,

 'timeout' => 60 * 60,

],

],

 'local' => [

 'supervisor-1' => [

 'maxProcesses' => 3,

],

 'mixpost-heavy' => [

 'connection' => 'mixpost-redis',

 'queue' => ['publish-post'],

 'balance' => 'auto',

 'processes' => 3,

 'tries' => 1,

 'timeout' => 60 * 60,

],

https://laravel.com/docs/horizon
https://laravel.com/docs/horizon#installation

In the config/queue.php file you must add the mixpost-redis connection:

Don't forget to run php artisan horizon . In production, you need a way to keep your horizon
 processes running. For this reason, you need to configure a process monitor Supervisor that can
detect when your horizon processes exit and automatically restart them.

Example of supervisor config:

In the console kernel (app/Console/Kernel.php), you should schedule these commands:

],

],

'connections' => [

 // ...

 'mixpost-redis' => [

 'driver' => 'redis',

 'connection' => 'default',

 'queue' => env('REDIS_QUEUE', 'default'),

 'retry_after' => 11 * 60,

 'block_for' => null,

],

[program:mixpost_horizon]

process_name=%(program_name)s

command=php /path-to-your-project/artisan horizon

autostart=true

autorestart=true

user=your_user_name

stopwaitsecs=3600

Schedule the commands

protected function schedule(Schedule $schedule)

{

 // ...

 \Inovector\Mixpost\Schedule::register($schedule);

https://laravel.com/docs/10.x/queues#supervisor-configuration

Don't forget to add a cron that runs the scheduler:

* * * * cd /path-to-your-project && php artisan schedule:run >> /dev/null 2>&1

After performing all these steps, you should be able to visit the Mixpost UI at /mixpost.

 $schedule->command('horizon:snapshot')->everyFiveMinutes();

 $schedule->command('queue:prune-batches')->daily();

}

Visit the UI

Revision #25
Created 1 May 2023 15:08:37 by Dima Botezatu
Updated 15 April 2024 18:48:29 by Dima Botezatu

