
As a package in an existing Laravel app
As a standalone app
Using Docker Image

Installation

If you already have a Laravel 10 application, you can install Mixpost as a package inside it.

To install Mixpost, you'll need to get a license first.

First, add the packages.inovector.com repository to your composer.json .

Next, you need to create a file called auth.json and place it either next to the composer.json file in
your project or the composer home directory. Using this command, you can determine the
composer home directory on *nix machines.

This is the content you should put in auth.json :

As a package in an existing
Laravel app
Getting a license

Installation via Composer

"repositories": [

 {

 "type": "composer",

 "url": "https://packages.inovector.com"

 }

],

composer config --list --global | grep home

{

 "http-basic": {

 "packages.inovector.com": {

 "username": "<YOUR-MIXPOST.APP-ACCOUNT-EMAIL-ADDRESS-HERE>",

 "password": "<YOUR-LICENSE-KEY-HERE>"

https://mixpost.app/pricing

To validate if Composer can read your auth.json you can run this command:

If you did everything correctly, the above command should display your credentials. If that
command doesn't display anything, verify that you created an auth.json as mentioned above.

With this configuration in place, you'll be able to install the package into your Laravel project using
this command:

After installing the Mixpost package, you may execute:

To ensure that assets get republished each time Mixpost is updated, we strongly advise you to add
the following command to the post-update-cmd of the scripts section of your composer.json .

Mixpost uses Job Batching and you should create a database migration to build a table to contain
meta-information about your job batches.

If your application does not yet have this table, it may be generated using the:

Run the migrations with:

To make media files (images & videos) accessible from the web you should create a symbolic link
from public/storage to storage/app/public

 }

 }

}

composer config --list --global | grep packages.inovector.com

composer require inovector/mixpost-pro-team "^2.0"

php artisan mixpost:install

"scripts": {

 "post-update-cmd": [

 "@php artisan mixpost:publish-assets --force=true"

]

}

php artisan queue:batches-table

php artisan migrate

https://laravel.com/docs/10.x/queues#job-batching

You can publish the config file with:

Mixpost has the ability to generate images from video while uploading a video file. This would not
be possible without FFmpeg installed on your server. You need to follow FFmpeg installation
instructions on their official website.

After installation, depending on the operating system, you need to set the ffmpeg_path and
ffprobe_path in the Mixpost config file.

Default folder path: /usr/bin/ . If FFmpeg is there, there is no need to change it.

Or, you can set them in your .env file

Mixpost utilizes its unique internal exception handler rather than the default "
App\Exceptions\ExceptionHandler". To integrate external error reporting tools with your
Mixpost setup, you should use the "Mixpost::report" method. Generally, this method is called
from the register method of your app's "App\Providers\AppServiceProvider" class:

php artisan storage:link

php artisan vendor:publish --tag=mixpost-config

/*

 * FFMPEG & FFProbe binaries paths, only used if you try to generate video thumbnails

 */

'ffmpeg_path' => env('FFMPEG_PATH', '/usr/bin/ffmpeg'),

'ffprobe_path' => env('FFPROBE_PATH', '/usr/bin/ffprobe'),

FFMPEG_PATH=/usr/bin/ffmpeg

FFPROBE_PATH=/usr/bin/ffprobe

Error Reporting

use Inovector\Mixpost\Mixpost;

use Sentry\Laravel\Integration;

Mixpost::report(function($exception) {

 Integration::captureUnhandledException($exception);

});

https://ffmpeg.org/download.html

Mixpost handles various tasks in a queued way via Laravel Horizon. If your application doesn't have
Horizon installed yet, follow their installation instructions.

After Horizon is installed, don't forget to set QUEUE_CONNECTION in your .env file to redis .

config/horizon.php should have been created in your project. In this config file, you must add a
block named mixpost-heavy to both the production and local environment.

Install Horizon

 'environments' => [

 'production' => [

 'supervisor-1' => [

 'maxProcesses' => 10,

 'balanceMaxShift' => 1,

 'balanceCooldown' => 3,

],

 'mixpost-heavy' => [

 'connection' => 'mixpost-redis',

 'queue' => ['publish-post'],

 'balance' => 'auto',

 'processes' => 8,

 'tries' => 1,

 'timeout' => 60 * 60,

],

],

 'local' => [

 'supervisor-1' => [

 'maxProcesses' => 3,

],

 'mixpost-heavy' => [

 'connection' => 'mixpost-redis',

 'queue' => ['publish-post'],

 'balance' => 'auto',

 'processes' => 3,

 'tries' => 1,

 'timeout' => 60 * 60,

],

https://laravel.com/docs/horizon
https://laravel.com/docs/horizon#installation

In the config/queue.php file you must add the mixpost-redis connection:

Don't forget to run php artisan horizon . In production, you need a way to keep your horizon
 processes running. For this reason, you need to configure a process monitor Supervisor that can
detect when your horizon processes exit and automatically restart them.

Example of supervisor config:

In the console kernel (app/Console/Kernel.php), you should schedule these commands:

],

],

'connections' => [

 // ...

 'mixpost-redis' => [

 'driver' => 'redis',

 'connection' => 'default',

 'queue' => env('REDIS_QUEUE', 'default'),

 'retry_after' => 11 * 60,

 'block_for' => null,

],

[program:mixpost_horizon]

process_name=%(program_name)s

command=php /path-to-your-project/artisan horizon

autostart=true

autorestart=true

user=your_user_name

stopwaitsecs=3600

Schedule the commands

protected function schedule(Schedule $schedule)

{

 // ...

 \Inovector\Mixpost\Schedule::register($schedule);

https://laravel.com/docs/10.x/queues#supervisor-configuration

Don't forget to add a cron that runs the scheduler:

* * * * cd /path-to-your-project && php artisan schedule:run >> /dev/null 2>&1

After performing all these steps, you should be able to visit the Mixpost UI at /mixpost.

 $schedule->command('horizon:snapshot')->everyFiveMinutes();

 $schedule->command('queue:prune-batches')->daily();

}

Visit the UI

If you don't know Laravel, but have basic PHP knowledge and know how to deploy to a server, you
can follow these instructions.

You can create a new Laravel application with Mixpost preinstalled using Composer.

In order to install Mixpost, you'll need to get a license first.

You can create the application with Mixpost pre-installed using this command

During the execution of this command, Composer will ask for a user and a password. The user is
the email address of your mixpost.app account. The password is the key to your Mixpost license.

You will need to modify the value of the APP_URL in the .env file to your project URL.

For example: APP_URL=https://your-domain.com

You will need to modify the values of the DB_* entries in the .env file to make sure they are
aligned with your database.

Then, run the migration to create all tables.

As a standalone app

Getting a license

Creating the application

composer create-project inovector/mixpost-pro-team-app

Configure the app URL

Configure the database

https://mixpost.app/pricing
https://mixpost.app
https://mixpost.app/profile/purchases

By configuring SMTP, Mixpost will be able to send emails such as (password reset link). You will
need to modify your .env file.

Make sure you have the right file permissions by following this tutorial.

Server configuration Guide

After performing all these steps, you should be able to visit the Mixpost UI at /mixpost.

Change the value of APP_ENV from the .env file to production.

php artisan migrate

Configure the SMTP

MAIL_MAILER=smtp

MAIL_HOST=smtp.mailgun.org

MAIL_PORT=587

MAIL_USERNAME=

MAIL_PASSWORD=

MAIL_ENCRYPTION=tls

MAIL_FROM_ADDRESS="hello@example.com"

MAIL_FROM_NAME="${APP_NAME}"

File Permissions

Server configuration (Manual)

Visit the UI

Deploying to production

https://inovector.com/blog/mastering-file-permissions-in-laravel-a-step-by-step-tutorial
https://docs.inovector.com/books/server-configuration-mixpost

In your production environment, this value should always be false. If the APP_DEBUG variable is set
to true in production, you risk exposing sensitive configuration values to your application's end
users.

When deploying to production, you should make sure that you run the config:cache command
during your deployment process:

To improve Mixpost application performance, run:

During your Mixpost deployment process (update/upgrade of Mixpost or changes some code), you
should instruct the Horizon process to terminate so that it will be restarted by your process monitor
and receive your code changes:

APP_ENV=production

Debug Mode

Caching Configuration

php artisan config:cache

Once the configuration has been cached, everything you change in the .env file will have no
effect. To have an effect, you must repeat the execution of the cache command.

Caching Routes

php artisan route:cache

Once the route has been cached, you have to repeat it every time you
deploy/update/upgrade the Mixpost application.

Deploying Horizon

php artisan horizon:terminate

Docker Installation (Guide)

Install Docker Engine

Docker Install documentation

Docker-Compose Install documentation

Have a VPS?

Desktop?

Just create a docker-compose.yml file on your server, and change the values (which start with the
example_*) with real values.

For passwords, we recommend using strong values. You can use this tool to generate strong
passwords:

Required:

LICENSE_KEY (license key, see Mixpost license page)
APP_URL (your app URL, for example, https://my-project.com)
APP_KEY (your app key. Generate a base64 secret with this tool)
DB_DATABASE (the database name of the linked MySQL container)
DB_USERNAME (the user of the linked MySQL container)
DB_PASSWORD (the user password of the linked MySQL container)

Optional:

APP_NAME (Your project name. Default value: 'Mixpost')
APP_DEBUG (Available options: true / false . Default value: false)
MIXPOST_CORE_PATH (This is the path that Mixpost will use to load its core routes and assets.
Default value: mixpost)
MIXPOST_PUBLIC_PAGES_PREFIX (public pages have an endpoint directly after the URL domain
(for example, https://your-domain/privacy-policy). Default value: pages , which means
https://your-domain/pages/privacy-policy)
MIXPOST_FORGOT_PASSWORD (Enable/Disable Forgot Password feature. Default value: 'true')

Using Docker Image

https://docs.docker.com/engine/install/
https://docs.docker.com/desktop/
https://docs.docker.com/compose/install/
https://passwordsgenerator.net/
https://mixpost.app/profile/purchases
https://my-project.com/
https://mixpost.app/encryption-key-generator
https://your-domain/pages/privacy-policy)

MIXPOST_TWO_FACTOR_AUTH (Enable/Disable Two Factor Authentication feature. Default value:
'true')
MIXPOST_DEFAULT_LOCALE (Default value: 'en-GB')
MAIL_HOST (Default value: smtp.mailgun.org)
MAIL_PORT (Default value: 587)
MAIL_USERNAME

MAIL_PASSWORD

MAIL_ENCRYPTION (Default value: tls)
MAIL_FROM_ADDRESS (Default value: hello@example.com)
MAIL_FROM_NAME (Default value: Example)
DB_HOST (The IP of the MySql server. Default value: mysql)
DB_PORT (The port of the MySql server. Default value: 3306)
REDIS_HOST (The IP of Redis server. Default value: redis)
REDIS_PORT (The port of the Redis server. Default value: 6379)

version: '3.1'

services:

 mixpost:

 image: inovector/mixpost-pro-team:latest

 environment:

 LICENSE_KEY: 'example_license_key'

 APP_URL: https://your-domain.com

 APP_KEY: example_secret_key # Generate a base64 secret with this tool:

https://mixpost.app/encryption-key-generator

 DB_DATABASE: 'example_db_name'

 DB_USERNAME: 'example_db_user'

 DB_PASSWORD: 'example_db_password'

 ports:

 - 9000:80

 volumes:

 - storage:/var/www/html/storage/app

 depends_on:

 - mysql

 - redis

 restart: unless-stopped

 mysql:

 image: 'mysql/mysql-server:8.0'

 ports:

 - '3306:3306'

 environment:

 MYSQL_DATABASE: 'example_db_name'

Then execute this command:

You can connect to Mixpost by accessing the URL address set in APP_URL

Mixpost uses encrypting and decrypting text via OpenSSL using AES-256 and AES-128 encryption
to secure your credentials of services and connected social accounts. That said, we don't
recommend you change APP_KEY . By changing the APP_KEY , some functions in the applications will
stop working, namely: service credentials and connected social account tokens will no longer be

 MYSQL_USER: 'example_db_user'

 MYSQL_PASSWORD: 'example_db_password'

 volumes:

 - 'mysql:/var/lib/mysql'

 healthcheck:

 test: ["CMD", "mysqladmin", "ping", "-p example_db_password"]

 retries: 3

 timeout: 5s

 restart: unless-stopped

 redis:

 image: 'redis:latest'

 command: redis-server --appendonly yes --replica-read-only no

 volumes:

 - 'redis:/data'

 healthcheck:

 test: ["CMD", "redis-cli", "ping"]

 retries: 3

 timeout: 5s

 restart: unless-stopped

volumes:

 mysql:

 driver: local

 redis:

 driver: local

 storage:

 driver: local

docker-compose up -d

Important information

able to be decrypted. You will have to re-enter your service credentials and reconnect your social
accounts. For Mastodon, you have to re-create a new app, see the instruction.

Change the API_KEY only if you have a serious reason such as your access to the server has been
compromised.

https://docs.inovector.com/books/integration-of-social-platforms/page/mastodon

